If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+8v=19
We move all terms to the left:
v^2+8v-(19)=0
a = 1; b = 8; c = -19;
Δ = b2-4ac
Δ = 82-4·1·(-19)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{35}}{2*1}=\frac{-8-2\sqrt{35}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{35}}{2*1}=\frac{-8+2\sqrt{35}}{2} $
| 5b-2=6b-10 | | |-20|=|-x| | | 49x^2-14x-34=10 | | 11/3x+3=19 | | 7/8-1/3t=2/5 | | 5.07+6.2v=12.7v-6.63 | | 11=d6 | | 4-6b=-7b | | 8y/8=-2/8 | | 4u+3=8u-9 | | 4(2x-2)-2=5-(3x+4) | | -3(-7w+1)-7w=2(w-6)-5 | | 2/3g+1/2g=13 | | 16q-3q=3q+40 | | 2x^2+12x=936 | | 10=4/5t+8 | | 5(v-2)-1=-3(-2v+7)-9v | | 7.5r-19.95=18.72+15.33+11.1r | | 4(x-1)+3x=31 | | -7u-13=-5(u+1) | | 1/5t-0.4+2/5t=0.6-1/10t | | 169=x^2+49+x^2 | | 0.25+1.50x=0.375 | | 4(w+2)-7w=35 | | .25(8x+4)=2x-4 | | 100-25x2=0 | | -7x+4(x-3)=-15 | | 100-25x2=100 | | 0.4x-0.4=0.5x-3 | | -6+18b=17b+7 | | x=8x-4(3x-3)+2 | | -1x^2+1(x+2)=-1 |